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significantly different wave speeds. For those phenomena
mainly associated with waves which have relatively smallAn iterative implicit–explicit hybrid scheme is proposed for hyper-

bolic systems of conservation laws. Each wave in a system may be wave speeds, a small time step in an explicit scheme is one
implicitly, or explicitly, or partially implicitly and partially explicitly of the main restrictions which limits the efficiency of an
treated depending on its associated Courant number in each numer- explicit scheme in a simulation.ical cell, and the scheme is able to smoothly switch between implicit

Implicit and implicit–explicit hybrid schemes for fluidand explicit calculations. The scheme is of Godunov-type in both
explicit and implicit regimes, is in a strict conservation form, and dynamics have been developed for many years [8–22].
is accurate to second-order in both space and time for all Courant Beam and Warming [10] proposed an implicit scheme for
numbers. The computer code for the scheme is easy to vectorize. hyperbolic systems of conservation laws. Engquist and
Multicolors proposed in this paper may reduce the number of itera-

Osher [11] proposed a method for transonic flows. Vantions required to reach a converged solution by several orders for
Leer and Mulder [12] developed a scheme which is time-a large time step. The feature of the scheme is shown through

numerical examples. Q 1996 Academic Press, Inc. accurate for small time steps and turns into a relaxation
method for large time steps. Yee et al. [13] proposed an
implicit TVD scheme for steady states. Glaz and Wardlaw

1. INTRODUCTION
[14] proposed a high-order Godunov scheme for steady
supersonic gas dynamics. Fryxell et al. [15] developed aDuring the past two decades, Godunov schemes for hy-
method which extends Godunov schemes into the implicitperbolic systems of conservation laws have been developed
regime. Jameson and Yoon [16, 17] proposed an implicitwhich are particularly efficient for shock problems. Godu-
scheme which was combined with the multigrid method.nov [1] supposed that the initial data could be replaced by
More recently, Loh and Hui [18] developed a first-ordera set of piecewise constant data with discontinuities and
Godunov scheme for steady supersonic flows; Blunt andused exact solutions of Riemann problems to advance
Rubin [19] extended TVD schemes to fully implicit andpiecewise constant data. A major extension to Godunov’s
partially implicit regimes; Wilcoxson and Manousiou-scheme was made by Van Leer in his MUSCL scheme [2,
thankis [20] developed an implicit time marching imple-3] which used a Riemann solver to advance piecewise linear
mentation of an essentially non-oscillatory scheme. Collinsdata. Other examples of Godunov schemes include Roe’s

method [4], the piecewise parabolic method (PPM) [5, 6], et al. [21] developed an implicit–explicit Eulerian Godunov
scheme for compressible flows using a modified Enguist–and the TVD method [7]. The essential ingredients of

Godunov schemes include the use of characteristic formu- Osher flux function. Dai and Woodward developed an
iterative approach for implicit–explicit hybrid calculationslations and an approximate Riemann solver which is suit-

able for computing a set of time-averaged fluxes at inter- for the Euler equations [22].
The Newton iteration is often used in implicit schemesfaces between grid cells.

Godunov schemes may be second-order accurate, but for a nonlinear system. But, the Newton iteration is time-
consuming in an implicit scheme. An implicit scheme typi-are explicit in time. A time step in an explicit scheme is

restricted by the largest of Courant numbers associated cally involves linearization to get a linear system. The linear
system is then exactly or approximately solved. An exactwith all kinds of waves, which cannot be larger than unity.

For some problems described by a hyperbolic system of linear solver is difficult to vectorize and needs large mem-
ory. Therefore, iterative linear solvers are often used. Butconservation laws, desired numerical schemes should be

stable for large time steps and yet resolve shock fronts iterative solvers often need a large number of iterations.
In this paper, a high-order implicit–explicit hybrid schemeaccurately if necessary. Schemes with this feature are more

desired for a system in which different waves may have for hyperbolic systems of conservation laws is developed,
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which is the extension of the approach reported in [22] to
general systems. The iterative approach to be presented
in this paper will result in a faster convergence than that
reported in [22]. The iterative approach involves only a
single level of iterations which solve both the implicit rela-
tions arising from upstream centered differences for all
wave families and the nonlinearity of the systems. Only a
small number of iterations is expected to be needed in a
simulation with large time steps. The scheme is of Godu-

FIG. 1. The structure of a cell in space-time for two kinds of situations,nov-type in both implicit and explicit regimes and is ex-
one with the Courant number less than unity (a) and the other with thepected to be able to resolve discontinuities.
number greater than unity (b). In the first case, the time average of a(x,The plan of this paper is as follows. The second section
t) over the time step Dt at xi11 is equal to the spatial average of a over

is an illustration of the scheme through linear advection. the domain [xi11 2 c Dt, xi11] at t 5 0. In the other case, an extra time
The scheme for hyperbolic systems of conservation laws level at t 5 Dt/2 is introduced, and two characteristics passing through

(xi11 , Dt/2) or (xi11 , Dt) are traced back to the center x(m)
i of the cell.is in the third section. The numerical examples for the

Euler equations and ideal magnetohydrodynamical
(MHD) equations are in the fourth section. The final sec-
tion is for conclusions and a brief discussion. calculated from the distribution of a over the neighbor

cell. In this case, Fryxell et al. [15] introduced an extra
2. A LINEAR ADVECTION SCHEME time level at t 5 Dt/2 (Fig. 1b).

For the first half time step, we have an equation similarWe first illustrate the iterative implementation for lin-
to Eq. (2):ear advection

kal(h)
i 5 kali 2

c Dt
2 Dxi

(a(h)
i11 2 a(h)

i ). (3)­a
­t

1 c
­a
­x

5 0, (1)

Here kal(h)
i is the cell-average of a at t 5 Dt/2, and a(h)

i iswhere x and t are the space and time coordinates, a is the
the time-average of a over the first half time step at x 5quantity being advected, and c is a constant advection
xi . The time-averages, ai and a(h)

i , may be approximatelyvelocity. Considering a numerical cell [xi , xi11], we write
calculated through a linear interpolation in time. The linearEq. (1) in a difference form:
interpolation is uniquely determined by a(h)

i [; a(xi , Dt/
2)] and a(n)

i [; a(xi , Dt)]. Thus, Eqs. (2), (3) may be writ-
kal(n)

i 5 kali 2
c Dt
Dxi

(ai11 2 ai). (2) ten as

kal(n)
i 5 kali 2 si(a(h)

i11 2 a(h)
i ), (4)Here Dxi is the width of the cell, Dt is the time step,

kal(n)
i (or kali) is the cell-average of a over the cell at t 5 kal(h)

i 5 kali 2 Assi[Dsa(h)
i11 2 Asa(n)

i11 2 (Dsa(h)
i 2 Asa(n)

i )]. (5)
Dt (or t 5 0), and ai is the time-average of a at xi over the
time step, i.e., We mention that fractional time step difference approxi-

mations have been used in [23, 24].
In order to find a(n)

i11 and a(h)
i11 , two characteristic curveskal(n)

i ; 1
Dxi

Exi11

xi

a(x, Dt) dx,
passing through (xi11 , Dt) or (xi11 , Dt/2) in the (x 2 t)-
space are traced back to the center of the cell, x(m)

i ;
ai ; 1

Dt
EDt

0
a(xi , t) dt. (xi11 1 xi)/2 (see Fig. 1b). a(n)

i11 and a(h)
i11 are equal to

a(x(m)
i , t(h)

i Dt) and a(x(m)
i , ti Dt) respectively. Here t (h)

i and
ti are defined as

For the case in which the Courant number si (; c Dt/
Dxi) is less than unity (Fig. 1a), the time-average ai11 is
equal to the domain-average of a over the domain of de- t (h)

i ; 1 2
1

2si
, ti ; 1

2 S1 2
1
si
D.

pendence [xi11 2 c Dt, xi11], and the scheme is uncondition-
ally stable.

For the case in which the Courant number is greater Up to second order of accuracy, a(x(m)
i , t (h)

i Dt) and
a(x(m)

i , ti Dt) are the cell-averages of a over the cell [xi ,than unity, the domain of dependence extends beyond a
cell interface, and thus the time-average ai11 can not be xi11] at t 5 t (h)

i Dt and t 5 ti Dt respectively, which may
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be approximately calculated through a parabolic interpola- a(n)
i ; t (h)

i (2t(h)
i 2 1), b(n)

i ; 4t (h)
i (1 2 t (h)

i ), (10)
tion for the cell-average kali (t) in time. The parabola is

a(h)
i ; ti(2ti 2 1), b(h)

i ; 4ti(1 2 ti). (11)uniquely determined by three cell-averages, kali , kal(h)
i , and

kal(n)
i . Therefore a(n)

i11 and a(h)
i11 may be written as

We initially guess interface values, a(n)
i and a(h)

i , and then
calculate cell-averages kal(n)

i and kal(h)
i through solving Eqs.a(n)

i11 5 kali 1 (2da(n)
i 1 4 da(h)

i )t (h)
i (8), (9) for da(n)

i and da(h)
i . The interface values are im-

proved through Eqs. (6), (7) with the right-hand side1 (2 da(n)
i 2 4 da(h)

i )(t (h)
i )2, (6)

(RHS) of Eqs. (6), (7) evaluated at the improved cell-
a(h)

i11 5 kali 1 (2da(n)
i 1 4 da(h)

i )ti averages. One iteration consists of the two sets of calcula-
tions, one for Eqs. (8), (9) and the other for Eqs. (6),1 (2 da(n)

i 2 4 da(h)
i )t 2

i . (7)
(7). The next iteration may be started from the improved
interface values. Numerical experiments show that this it-Here da(n)

i and da(h)
i are defined as

erative procedure converges. We will show the conver-
gence later.

da(n)
i ; kal(n)

i 2 kali ,

3. A SCHEME FOR HYPERBOLIC SYSTEMS OFda(h)
i ; kal(h)

i 2 kali .
CONSERVATION LAWS

If interface values a(n)
i and a(h)

i in Eqs. (4), (5) are elimi- Let us consider a hyperbolic system of conservation laws:
nated through Eqs. (6), (7), we will have a block-bidiagonal
system of linear equations which can be solved for kal(n)

i

and kal(h)
i . If the set of resulting linear equations is exactly

­U
­t

1
­F(U)

­x
5 0. (12)

solved, it has been shown [15] that the resulting scheme
is unconditionally stable for Courant numbers greater than

Here U is a vector consisting of n variables U 5 (u1 ,unity. Through an analysis, it has been shown [15] that the
u2 , ..., un)T, and F(U) is a flux vector F(U) 5 ( f1(U),shorter wavelength modes undergo the stronger damping,
f2(U), ..., fn(U))T. The superscript T here stands for trans-for a given wavelength the solution approaches the correct
pose. We define a matrix A(U) (; hajk , j, k 5 1, 2, ...,steady state in the limit of large Courant number, signifi-
nj) by ajk ; ­fj(U)/­uk . Eigenvalues of the matrix A(U)cant phase errors develop only for Courant numbers for
denoted by ck (k 5 1, 2, ..., n) are speeds of characteris-which there is strong damping, and the scheme is able to
tic waves.compute a given wavelength mode at a considerably large

Suppose all wave speeds ck are real. The system is strictlyCourant number without significant damping of the
hyperbolic if all characteristic speeds ck are distinct. Other-wave occurring.
wise, it is nonstrictly hyperbolic. For example, the EulerOur purpose is to find an iterative approach for cell-
equations form a strictly hyperbolic system with character-averages kal(n)

i (i 5 1, 2, ...). From an initial guess for
istic speeds (u 2 cs), u, and (u 1 cs). Here u and cs are ainterface values a(n)

i and a(h)
i , a straightforward procedure

flow velocity and a sound speed. Ideal MHD equations [25]is to calculate cell-averages, kal(n)
i and kal(h)

i , through Eqs.
form a nonstrictly hyperbolic system with characteristic(4), (5) followed by an improvement of the interface values
speeds (u 2 cf), (u 2 ca), (u 2 cs), u, (u 1 cf), (u 1 ca),through Eqs. (6), (7). Unfortunately, numerical experi-
and (u 1 cs). Here cf , ca , and cs are fast, Alfven, and slowments show that this iterative procedure does not converge
wave speeds, and cf $ ca $ cs . Both fast and slow waveswhen the Courant number is larger than unity. This is
are compressible, but Alfven waves are incompressible.because the error in kal(n)

i is increased by a factor of the
When one or more components of a magnetic field vanish,Courant number through each iteration for Eq. (2).
wave speeds may become degenerate in ideal MHD equa-Our approach for the linear advection is as follows. We
tions.eliminate a(n)

i11 and a(h)
i11 in Eqs. (4), (5) through Eqs. (6),

We assume that an entropy wave (if it exists) has a(7) to obtain
vanishing wave speed, and each of the other wave speeds
is either non-negative or non-positive. For many physical

(1 1 sia
(h)
i ) da(n)

i 1 sib
(h)
i da(h)

i 5 si(a(h)
i 2 kali), (8) conservation laws, we may make a coordinate transforma-

tion and let a system to have the property. For example,Afsi(3a(h)
i 2 a(n)

i ) da(n)
i 1 [1 1 Afsi(3b(h)

i 2 b(n)
i )] da(h)

i
the Euler equations and ideal MHD equations may be

5 Afsi(3a(h)
i 2 a(n)

i ) 2 Assikali . (9) written in a Lagrangian coordinate, in which wave speeds
of the Euler equations become 6Cs and 0 with Cs being
a sound speed, and wave speeds of ideal MHD equationsHere a(n)

i , b(n)
i , a(h)

i , and b(h)
i are defined as
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are 6Cf , 6Ca , 6Cs , and 0 with Cf , Ca , and Cs being the kUl(n)
i 5 kUli 2

Dt
Dxi

T(U(h)
i , U(h)

i11)(U(h)
i11 2 U(h)

i ). (17)fast, Alfven, and slow wave speeds, respectively.
Considering a numerical grid hxij and a time step Dt, and

integrating Eq. (12) in a rectangular domain xi , x , xi11 Here T(U(h)
i , U(h)

i11)(U(h)
i11 2 U(h)

i ) comes from the Taylor
and 0 , t , Dt, we obtain the following difference equation: expansion of the net flux DF ; F(U(h)

i11) 2 F(U(h)
i ). For

example, suppose F(U) is a function of two variables, u
and v. We write the net flux as

kUl(n)
i 5 kUli 2

Dt
Dxi

(Fi11 2 Fi). (13)

DF 5 F(u(h)
i11 , v(h)

i11) 2 F(u(h)
i , v(h)

i11)
Here Dxi is the width of the cell [xi , xi11], kUl(n)

i (or Ui) is 1 F(u(h)
i , v(h)

i11) 2 F(u(h)
i , v(h)

i )
a cell-average of U at t 5 Dt (or t 5 0) over the cell, and

5 T1(u(h)
i , v(h)

i11)(u(h)
i11 2 u(h)

i ) 1 T2(u(h)
i , v(h)

i11)(v(h)
i11 2 v(h)

i )Fi is a time-average of F over the time step. The cell-
average and time-average are defined as

5 (T1 , T2)(U(h)
i11 2 U(h)

i ).

kUl(n)
i ; 1

Dxi
Exi11

xi

U(x, Dt) dx, Here T1(u(h)
i , v(h)

i11) is the Taylor expansion of [F(u(h)
i11 ,

v(h)
i11) 2 F(u(h)

i , v(h)
i11)] at (u(h)

i , v(h)
i11) divided by (u(h)

i11 2 u(h)
i ),

and T2(u(h)
i , v(h)

i ) is the Taylor expansion of [F(u(h)
i , v(h)

i11) 2
Fi ; 1

Dt
EDt

0
F[U(xi , t)] dt. F(u(h)

i , v(h)
i )] at (u(h)

i , v(h)
i ) divided by (v(h)

i11 2 v(h)
i ). In this

special case, T(U(h)
i , U(h)

i11) 5 (T1 , T2).
For a general F containing n variables, u1 , u2 , ..., un , weIt should be noted that Eq. (13) is exact. In this paper, we

write the net flux aswill use an approximation

F(U) 5 F(U), (14) DF 5 Ok5n

k51
[F(u1i11 , u2i11 , ..., un2ki11 , un2k11i , ..., uki)

which is second-order accurate. 2 F(u1i11 , u2i11 , ..., un2k21i11 , un2ki , ..., uki)],
We approximately calculate a time-average through a

linear interpolation of an interface value along time. The expand F(u1i11, u2i11 , ..., un2ki11 , un2k11i , ..., uki) 2 F(u1i11 ,
linear interpolation is uniquely determined by U(h)

i and u2i11 , ..., un2k21i11 , un2ki , ..., uki) at (u1i11 , u2i11 , ..., un2k21i11 ,
U(n)

i . Here U(h)
i ; U(xi , Dt/2) and U(n)

i ; U(xi , Dt). There- un2ki , ..., uki) through the Taylor expansion, and then write
fore the difference Eq. (13) may be approximately writ- the net flux DF in the form T(U(h)

i , U(h)
i11)(U(h)

i11 2 U(h)
i ).

ten as Similarly, we write Eq. (16) as

kUl(n)
i 5 kUli 2

Dt
Dxi

[F(U(h)
i11) 2 F(U(h)

i )]. (15) kUl(h)
i 5 kUli 2

Dt
2 Dxi

T(U(hn)
i , U(hn)

i11 )(U(hn)
i11 2 U(hn)

i ). (18)

Similarly, integrating Eq. (12) in a rectangular domain Thus, we have written cell-averages in terms of interface
xi , x , xi11 and 0 , t , Dt/2, and using the linear values in Eqs. (17), (18) which are equivalent to Eqs. (4),
interpolation, we have (5) for the linear advection.

On the other hand, we have to write interface values,
U(h)

i11 and U(n)
i11 , in terms of cell-averages. To this end, we

kUl(h)
i 5 kUli 2

Dt
2 Dxi

[F(U(hn)
i11 ) 2 F(U(hn)

i )]. (16) use a Riemann solver [26] for hyperbolic systems of conser-
vation laws. Following a standard procedure [27], we may
obtain differentials of Riemann invariants for n character-

Here
istic waves:

U(hn)
i ; DsU(h)

i 2 AsU(n)
i . dRk 5 LT

k(U) dU for k 5 1, 2, ..., n. (19)

3.1. Iterative Approach
Here Lk(U) is the left eigenvector of A(U) associated with
the kth characteristic wave ck . Along the characteristicOur purpose in this subsection is to develop an iterative

approach to find the interface value, U(h)
i , which is needed curve determined by dx 5 ck(U) dt, dRk 5 0.

In order to find the interface value U(h)
i11 , we trace allin Eq. (15). To this end, we first write Eq. (15) in a form:



IMPLICIT-EXPLICIT SCHEME 185

Lk(Ui , Ui11) ; As signhD[Lk(Ui)]jhabs[Lk(Ui)]

1 abs[Lk(Ui11)]j

for ck . 0,

Lk(Ui , Ui11) ; As signhD[Lk(Ui11)]jhabs[Lk(Ui)]

1 abs[Lk(Ui11)]j
for ck , 0,

Lk(Ui , Ui11) ; As hLk(Ui) 1 Lk(Ui11)j for ck 5 0.

D(L) (;hdij , i, j 5 1, 2, ..., nj) is defined as a diagonal
matrix with djj equal to the jth element of the vector L,

FIG. 2. An illustration for calculation of interface values at x 5 xi11 sign(D) is defined as a diagonal matrix whose elements
and t 5 Dt/2 and t 5 Dt in the case with Courant numbers associated are signs of elements of D, and abs(L) is defined as a vectorwith all waves larger than unity. Two sets of characteristics are traced

whose elements are absolute values of elements of theback to the centers of two neighbor cells, x(m)
i and x(m)

i11 . Interface values
vector L.at xi11 and at t 5 Dt/2 and Dt may be obtained through solving two

Riemann problems, and may be written in terms of cell-averages at Similarly, the interface value U(n)
i11 may be found through

various time levels. A cell-average at t [ [0, Dt] may be approximately another set of linear equations:
calculated through a parabolic interpolation in time, and the parabola is
uniquely determined by cell-averages at t 5 0, Dt/2, and Dt.

Lk(kUl(h)
i , kUl(h)

i11)[U(n)
i11 2 U(x(m)

i , t (h)
ki Dt)] 5 0

for ck . 0, (24)
the characteristic curves passing through the point (xi11 ,

Lk(kUl(h)
i , kUl(h)

i11)[U(n)
i11 2 U(x(m)

i11 , t (h)
ki11 Dt)] 5 0Dt/2) back to centers of two neighbor cells, x(m)

i and x(m)
i11

(see Fig. 2). Time levels at the ends of the characteristic
for ck , 0, (25)

curves at the center x(m)
i are tkri

Dt. Here kr may be any
wave propagating to the right. Time levels at the ends of Lk(kUl(h)

i , kUl(h)
i11)[U(n)

i11 2 U(xi11 , 0)] 5 0. (26)
the characteristic curves at the center x(m)

i11 are tkli11 Dt.
Here kl may be any wave propagating to the left. tkri

and
Heretkli

are uniformly defined as

t (h)
ki 5 1 2

Dxi

2c(h)
ki Dt

,tki ; 1
2 S1 2

Dxi

cki DtD. (20)

Here cki is the wave speed ck evaluated at Ui . The interface and c(h)
ki is the wave speed ck evaluated at kUl(h)

i .
value U(h)

i11 may be found through a Riemann problem, in Up to second order of accuracy, U(x(m)
i , t) is equal to a

which the left state associated with the krth wave is U(xi , cell-average of U at the time t. A cell-average at any time
tkri

Dt), and the right state associated with the klth wave t [ [0, Dt] may be found through a parabolic interpolation
is U(xi11 , tkli11 Dt). Therefore, U(h)

i11 may be obtained in time. The parabola is uniquely determined by kUli ,
through a set of linear equations: kUl(h)

i , and kUl(n)
i . Thus U(x(m)

i , tki Dt), U(x(m)
i11 , tki11 Dt),

U(x(m)
i , t (h)

ki Dt), and U(x(m)
i11 , t (h)

ki11 Dt) in Eqs. (21), (22),
(24), (25) may be written in terms of kUli , kUl(h)

i , andLk(Ui , Ui11)[U(h)
i11 2 U(x(m)

i , tki Dt)] 5 0 for ck . 0,
kUl(n)

i :
(21)

Lk(Ui , Ui11)[U(h)
i11 2 U(x(m)

i11 , tki11 Dt)] 5 0 for ck , 0, U(x(m)
i , ti Dt) 5 kUli 1 (2dU(n)

i 1 4 dU(h)
i )ti

(27)
(22) 1 (2 dU(n)

i 2 4 dU(h)
i )t 2

i .

Lk(Ui , Ui11)[U(h)
i11 2 U(xi11 , 0)] 5 0 for ck 5 0.

Here ti may be either tki or t (h)
ki , and(23)

dU(n)
i ; kUl(n)

i 2 kUli , dU(h)
i ; kUl(h)

i 2 kUli .Here
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Solving Eqs. (21)–(23) for U(h)
i11 and using Eq. (27), we

Q(h)
i ; Dt

2 Dxi
T(hn)

i [M(n)
i11 2 M(np)

i ],obtain

R(h)
i ; Dt

2 Dxi
T(hn)

i [M(h)
i11 2 M(hp)

i ],U(h)
i11 5 U(h0)

i11 1 H(n)
i11 dU(n)

i 1 H(h)
i11 dU(h)

i
(28)

1 H(np)
i11 dU(n)

i11 1 H(hp)
i11 dU(h)

i11 . S(h)
i ; 2

Dt
2 Dxi

T(hn)
i [U(hn0)

i11 2 U(hn0)
i 1 M(np)

i11 dU(n)
i11

Here the vector U(h0)
i11 and matrices H(n)

i11 , H(h)
i11 , H(np)

i11 , and 1 M(hp)
i11 dU(h)

i11 2 M(n)
i dU(n)

i21 2 M(h)
i dU(h)

i21],
H(np)

i11 depend on only initial values Ui and tki . Similarly,
T(hn)

i ; T(U(hn)
i , U(hn)

i11 ),solving Eqs. (24)–(26) for U(n)
i11 and using Eq. (27), we

have U(hn0)
i ; DsU(h0)

i 2 AsU(n0)
i ,

M(n)
i ; DsH(n)

i 2 AsN(n)
i , M(np)

i ; DsH(np)
i 2 AsN(np)

i ,U(n)
i11 5 U(n0)

i11 1 N(n)
i11 dU(n)

i 1 N(h)
i11 dU(h)

i
(29)

M(h)
i ; DsH(h)

i 2 AsN(h)
i , M(hp)

i ; DsH(hp)
i 2 AsN(hp)

i .1 N(np)
i11 dU(n)

i11 1 N(hp)
i11 dU(h)

i11 .

One iterative procedure for interface values is as follows.The vector U(n0)
i11 and matrices N(n)

i11 , N(h)
i11 , N(np)

i11 , and N(hp)
i11

Initially, we guess kUl(n)
i , kUl(h)

i , U(n)
i , and U(h)

i . We improvehave the same forms as those used in Eq. (28) if we make
kUl(n)

i and kUl(h)
i through solving Eqs. (30), (31) for dU(n)

ithe following substitutions:
and dU(h)

i . Thus we are solving a set of linear equations
with coefficients evaluated at the values obtained from thekUl(h)

i R kUli , t (h)
ki R tki , Dt R Dt/2.

last iteration. Then we substitute the improved kUl(n)
i and

kUl(h)
i into the RHS of Eqs. (17, 18) and improve U(n)

i and
In order to find an iterative approach for interface values U(h)

i . One iteration consists of the two sets of calculations,
which are needed in the Godunov scheme Eq. (15), we one for Eqs. (30), (31) and the other for Eqs. (17), (18).
substitute Eq. (28) into Eq. (17) for U(h)

i11 and U(h)
i . It should The next iteration may be started with the improved cell-

be noted that T(U(h)
i , U(h)

i11) in Eq. (17) is left alone when averages and interface values if necessary. Numerical ex-
we do the substitution. We may write the result in the periments for the advection, the Euler equations, and ideal
form: MHD equations show that this iterative procedure con-

verges. We call the approach A1 .
[I 1 Q(n)

i ] dU(n)
i 1 R(n)

i dU(h)
i 5 S(n)

i . (30) For the calculation of interface values in this implicit–
explicit hybrid scheme, each wave may be either implicitly
or explicitly treated depending on the Courant numberHere I is a unity matrix, and matrices Q(n)

i , R(n)
i , and vector

associated with the wave in each cell. For example, if ckiS(n)
i are defined as

Dt/Dxi is less than unity, then U(x(m)
i , tki Dt) in Eq. (21)

should be explicitly calculated from a domain-average for
Q(n)

i ; Dt
Dxi

T(h)
i [H(n)

i11 2 H(np)
i ], the kth wave, and all other characteristic fields are implic-

itly treated if their associated Courant numbers are larger
than unity.R(n)

i ; Dt
Dxi

T(h)
i [H(h)

i11 2 H(hp)
i ],

3.2. Multi-colors and Convergence of Iterations
S(n)

i ; 2
Dt
Dxi

T(h)
i [U(h0)

i11 2 U(h0)
i 1 H(np)

i11 dU(n)
i11 Now we discuss the speed of convergence. The conver-

gence is closely related to the propagation of information
1 H(hp)

i11 dU(h)
i11 2 H(n)

i dU(n)
i21 2 H(h)

i dU(h)
i21], in each iteration. Information travels only one numerical

cell during each iteration in the primitive approach A1 . InT(h)
i ; T(U(h)

i , U(h)
i11).

order to improve the speed of convergence, we divide
numerical cells into two sets: hi; i 5 2j 1 1, j 5 0, 1, 2, ...j

Similarly, substituting Eqs. (29) into Eq. (18) for and hi; i 5 2j, j 5 1, 2, ...j, which are called red and black
U(h)

i11 , U(n)
i11 , U(h)

i , and U(n)
i , and leaving T(U(hn)

i , U(hn)
i11 ) alone, sets. Equations (30), (31) are first implemented for the red

we may write Eq. (18) as set of cells, followed by the implementation for the other
set of cells. We call this approach A2 , which results in a

Q(h)
i dU(n)

i 1 [I 1 R(h)
i ] dU(h)

i 5 S(h)
i . (31) faster convergence than A1 since information travels two

cells during each iteration.
To further develop the red/black strategy, we divide allHere matrices Q(h)

i , R(h)
i , and vector S(h)

i are defined as
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each iteration in both Ak and Bk , and thus use of multicol-
ors does not involve more calculations than a single color.
Second, for the flux calculation needed in scheme Eq. (15),
we do not have to find converged interface values. Only
approximate interface values are needed.

As the final part of this subsection, we address the non-
strict hyperbolicity. For a system losing the strict hyperbol-
icity, eigenvalues ck(U) (k 5 1, 2, ..., n) may become degen-
erate at some state U*. Mathematically, the degeneracy
may cause a singularity when Eqs. (21)–(23) are solved.

FIG. 3. An illustration for A4 (A) and B4 (B). Twenty cells are divided To physically remove the degeneracy requires a more com-
into five bins, each of which contains four cells labeled as r(ed), g(reen), plete set of equations than the conservation laws them-
b(lue), and y(ellow). The order to implement Eqs. (30), (31) for cells selves. We use the same approach as that in [26] to removewith different colors in each bin are shown by the arrows in the first and

the degeneracy. If the eigenvalues become degenerate atsecond iterations.
U*, we replace the local U by (U* 1 d) when solving
Eqs. (21)–(23). Here d is a vector with small values for
its elements. d should be sufficiently small but within thenumerical cells into k groups, i.e., k colors: Gl (l 5 1,

2, ..., k), and the lth group contains cells hi; i 5 ( j 2 1)k 1 accuracy of digits of an actual machine. The influence of
the artificial d on numerical results is negligible if d isl, j 5 1, 2, ...j. An iteration consists of the implementation

of Eqs. (30), (31) consecutively for groups G1 , G2 , ..., Gk very small. Actual values of d may depend on specific
conservation laws.followed by another iteration with the opposite order, i.e.,

from Gk consecutively to G1 . We call the approach Ak .
The approach Ak is illustrated in Fig. 3A where all numeri- 4. NUMERICAL EXAMPLES
cal cells are divided into five bins, and four cells in each
bin are labeled as r(ed), g(reen), b(lue), and y(ellow). In The feature of the implicit–explicit hybrid scheme pre-
the first iteration, Eqs. (30), (31) are consecutively imple- sented in the last section will be shown here for the Euler
mented for all red cells, all green cells, all blue cells, and equations and ideal MHD equations. In this paper, we
all yellow cells. In the second iteration, the order in each limit the discussion to the c-law for the equation of state,
bin is opposite to that in the first iteration. The arrows although a more general equation of state may be accom-
in Fig. 3A indicate the orders of the implementation for modated. The dynamical step for these two sets of equa-
different colors in each bin during the first and second tions will be carried out in a Lagrangian grid followed by
iterations. Information may travel k cells in the ap- an explicit mapping [26] from Lagrangian to Eulerian
proach Ak . grids.

Although information may travel k cells during one iter-
ation, it is not true for the cells in different bins in Fig. 4.1. The One-Dimensional Euler Equations
3A. The approach Bk illustrated in Fig. 3B makes a further

The one-dimensional Euler equations areimprovement for convergence. As illustrated in Fig. 4B,
during the first iteration, Eqs. (30), (31) are first imple-
mented for the red cells in the 1st, 3rd, and 5th bins, and ­r

­t
1

­

­x
(ru) 5 0,for the yellow cells in the 2nd and 4th bins; then are imple-

mented for the green cells in the 1st, 3rd, and 5th bins and
for the blue cells in the 2nd and 4th bins; after that, they ­

­t
(ru) 1

­

­x
(ru2 1 p) 5 0,

are implemented for the blue cells in the 1st, 3rd, and 5th
bins and for the green cells in the 2nd and 4th bins; and
as the final step in the first iteration, they are implemented

­

­t
(rE) 1

­

­x
[u(rE 1 p)] 5 0.

for the yellow cells in the 1st, 3rd, and 5th bins and for
the red cells in the 2nd and 4th bins. In the second iteration,
the order of the implementation for different colors in Here r is the mass density, u is the flow velocity, p is the

pressure, and E is the total specific energy defined byeach bin is opposite to that in the last iteration. The arrows
in Fig. 4B show the orders of the implementation for E ; e 1 ru2/2 with e being the specific internal energy.

The pressure is related to the internal energy densitydifferent colors in each bin during the first and second
iterations. through the c-law p 5 (c 2 1)re with c being the ratio of

specific heat capacities. The equations may be written inWe mention two points for the iterative approach. First,
coefficients in Eqs. (30), (31) are evaluated only once in a Lagrangian form:
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­V
­t

5
­u
­m

, (32)

­u
­t

5 2
­p
­m

, (33)

­E
­t

5 2
­uP
­m

, (34)

where V is the specific volume (;1/r), and m is the mass
coordinate defined by dm ; r dx. Differentials of Riemann
invariants for two sound waves in Eqs. (32)–(34) are

dR6 ; dp 6 Cs du. (35)

Here the plus (or minus) sign is for the wave propagating
FIG. 4. The convergence obtained for the Euler equations: 256 cells

in the positive (or negative) x-direction, and Cs is a sound in [0, 1], Dt 5 0.195. Courant numbers are around 50. The wave travels
speed in the mass coordinate, Cs ; (crp)1/2. The sound about one-fifth of its wavelength during the time step. The dotted lines

indicated by k 5 1 results from the approach A1 , the dashed lines arespeed in the x-coordinate, cs , may be obtained through Cs
obtained from the approach Ak for k 5 2, 8, 32, 64, and 128, and thedivided by r. The simulation domain is one wavelength L
solid lines are obtained from the approach Bk for k 5 8, 32, 64, and 128.(5 1). The initial wave is set up through differentials of

Riemann invariants:

dotted lines in Fig. 5. The time step is 0.005. At each
time step, each characteristic field is partially implicitlydR1

dx
5 0.4 sin(2fx), (36)

and partially explicitly calculated. Solid lines in Fig. 5 are
the profiles at t 5 0.5, 1.0, 1.5, and 2.0. This example shows
a smooth switch between explicit and implicit calculations.

dR2

dx
5

dR0

dx
5 0, (37)

Figure 6 shows the profiles (solid lines) of the wave after
one time step when different time steps are used. The

and r(0, 0) 5 r0 (5 c 5 Gd) and p(0, 0) 5 p0 (; 1). Here dotted lines in the figure are initial profiles, and dashed
R0 ; pVc. We measure the convergence by the difference lines, which are considered as references, are obtained
between the converged solution and the solution from from the piecewise parabolic method [6]. When
each iteration: cs Dt/Dx P 20, it is hard to see the difference between the

implicit and explicit schemes.

«1d 5
1
L ON

i51
Dx(n)

i F 1
p0

up(n)
i 2 p(n)

i,pu 1
1
c0

uu(n)
i 2 u(n)

i,puG
(38)

4.2. Ideal Magnetohydrodynamical Equations

Effort has been paid for MHD calculations without or
partially without time step restrictions [28–38]. One ap-1

1
L ON

i51
Dx(h)

i F 1
p0

up(h)
i 2 p(h)

i,pu 1
1
c0

uu(h)
i 2 u(h)

i,puG.
proach is to make use of reduced MHD equations [28,
29] or incompressible models [30, 32] which eliminate fast
waves. In another typical approach for MHD calculations,Here the subscript p stands for the converged solution,
artificial terms are added to time-discretized equations toand Dx(n)

i and Dx(h)
i are the widths of the ith cell in the

provide means of stability [34–38]. In this subsection, weLagrangian coordinate at t 5 Dt and Dt/2. The dotted line
will illustrate the feature of the scheme described in thein Fig. 4 shows the relation between «1d and the number
third section through simulations for ideal MHD equa-of iterations obtained from A1 when a uniform grid with
tions. One-dimensional ideal MHD equations [25] areN (5 256) numerical cells are used in [0, 1], and Dt 5

0.195313. The Courant numbers, cs Dt/Dx, are around 50.
Dashed lines in Fig. 4 show the convergence of the ap- ­r

­t
1

­

­x
(rux) 5 0,

proach Ak for k 5 2, 8, 32, 64, and 128, and solid lines
show the convergence of the approach Bk for the same ­

­t
(rux) 1

­

­x
(ru2

x 1 P) 5 0,initial condition and time step.
The first numerical example is the propagation of a

sound wave initially given by Eqs. (36), (37) with a shifted ­

­t
(ruy) 1

­

­x
(ruxuy 1 Py) 5 0,

flow velocity ux . The initial condition is shown by the
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FIG. 5. The propagation of a sound wave, with 200 cells in [0, 1], Dt 5 0.005, and 2 iterations. The dotted lines are initial profiles, the solid
lines are the profiles at t 5 0.5, 1.0, 1.5, and 2.0. The results show a smooth switch between explicit and implicit calculations.

the end of each dynamical step. Therefore we write the­

­t
(ruz) 1

­

­x
(ruxuz 1 Pz) 5 0, equations in a Lagrangian form:

­

­t
(rE) 1

­

­x
(ruxE 1 ux P 1 uy Py 1 uzPz) 5 0, ­U

­t
1

­F(U)
­m

5 0, (39)

­By

­t
2

­

­x
(uyBx 2 uxBy) 5 0,

­Bz

­t
2

­

­x
(uzBx 2 uxBz) 5 0.

U ;1
V

ux

uy

uz

VBy

VBz

E

2, F(U) ;1
2ux

P

Py

Pz

2Bxuy

2Bxuz

Pux 1 Pyuy 1 Pzuz

2.Here r is the mass density, and (ux , uy , uz) and (Bx , By ,
Bz) are three components of the flow velocity and magnetic
field, respectively. Bx is a constant under the one-dimen-
sional approximation. E is the specific total energy, and P,
Py , and Pz are diagonal and off-diagonal total pressures.
E, P, Py , and Pz are defined as

Here V ; 1/r, and m is a mass coordinate defined by
dm ; r dx.E ; e 1

1
2

(u2
x 1 u2

y 1 u2
z) 1

1
8fr

(B2
x 1 B2

y 1 B2
z),

Differentials of Riemann invariants for two fast waves,
two slow waves, and two Alfven waves respectively have
forms:P ; p 1

1
8f

(B2
y 1 B2

z 2 B2
x),

dRf6 5 (C2
f 2 C2

a)(dP 6 Cf dux) 1 rPy(dPy 6 Cf duy)
Py ; 2

1
4f

BxBy , Pz ; 2
1

4f
BxBz .

1 rPz(dPz 6 Cf duz), (40)

dRs6 5 (C2
s 2 C2

a)(dP 6 Cs dux) 1 rPy(dPy 6 Cs duy)Here e is the specific internal energy and p is the ther-
mal pressure.

1 rPz(dPz 6 Cs duz), (41)
Again, we will implement the dynamical step in a La-

dRa6 5 6Ca(Bz duy 2 By duz) 1 (Bz dPy 2 By dPz). (42)grangian coordinate followed by an explicit mapping at
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FIG. 6. A sound wave (solid lines) after one time step when different time steps are used, with 200 cells in [0, 1] and B25 . Dotted lines are the
initial condition, and the dashed lines are references obtained from an explicit scheme. Six iterations are used for Dt 5 0.1; 10 iterations for Dt 5

0.2; 14 iterations for Dt 5 0.4; and 40 iterations for Dt 5 1.6.

Here the plus (or minus) sign is for a wave propagating
«1d 5

1
p0L

ON
i51

Dx(n)
i [uP(n)

i 2 P(n)
i,pu 1 uP(n)

yi 2 P(n)
yi,pu 1 uP(n)

zi 2 P(n)
zi,pu]

to the positive (or negative) x-direction. Ca , Cf , and Cs are
the wave speeds for Alfven, fast, and slow waves in the
mass coordinate respectively, and they are 1

1
c0L

ON
i51

Dx(n)
i [uu(n)

xi 2 u(n)
xi,pu 1 uu(n)

yi 2 u(n)
yi,pu 1 uu(n)

zi 2 u(n)
zi,pu]

Ca 5 ÏrB2
x/4f,

1
1

p0L
ON
i51

Dx(h)
i [uP(h)

i 2 P(h)
i,pu 1 uP(h)

yi 2 P(h)
yi,pu 1 uP(h)

zi 2 P(h)
zi,pu]

Cf,s 5
1

Ï2
hC2

0 1 C2
a 1 C2

t 6 Ï(C2
0 1 C2

a 1 C2
t )2 2 4C2

0C2
aj1/2.

1
1

c0L
ON
i51

Dx(h)
i [uu(h)

xi 2 u(h)
xi,pu 1 uu(h)

yi 2 u(h)
yi,pu 1 uu(h)

zi 2 u(h)
zi,pu].

Here the plus (or minus) sign is for the fast (or slow) wave
speed, and C2

0 and C2
t are defined as C2

0 ; cpr and C2
t ;

r(B2
y 1 B2

z)/4f. Wave speeds in the x-coordinate, ca , cf , and
cs , may be obtained through Ca , Cf , and Cs divided by the
mass density r.

We choose a nonlinear slow wave as an example. The
initial wave with unity wavelength (L 5 1) is set up through
differentials of Riemann invariants:

dRs1

dx
5 20.14 sin(2fx), (43)

dRf6

dx
5

dRa6

dx
5

dRs2

dx
5

DR0

dx
5 0, (44)

and (r, p, ux , uy , uz , By , Bz) is (1.0, 0, 20.5, 0, 0, 3.0, 2.0)
FIG. 7. A difference between the converged solution and the solutionat x 5 0. Here, R0 ; pV c, Bx 5 3.0. Wave speeds for fast,

after each iteration for ideal MHD equations, with 200 cells in [0, 1],Alfven, and slow waves under the initial condition are
Dt 5 0.394966. Courant numbers associated with fast, Alfven, and slow

around 1.53, 0.846, and 0.506. We measure the convergence waves are about 120, 67, and 40. The dotted line is obtained from A1 ,
by the difference between the converged solution and the dashed lines are obtained from Ak for k 5 2, 10, 20, 40, and 100, and

solid lines are obtained from Bk for k 5 10, 20, 40, and 100.solution after each iteration:
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FIG. 8. The propagation of a slow wave: Bx 5 3, 200 cells in [0, 1], Dt 5 9.87417 3 1023, and B25 and 3 iterations. Solid lines are the profiles
at t 5 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0.

Here p0 and c0 are the thermal pressure and sound speed The dotted line in Fig. 7 shows the relation between «1d

and the number of iterations obtained from A1 when aat x 5 0, the subscript p stands for the converged solution,
and Dx(n)

i and Dx(h)
i are the widths of the ith cell in the uniform grid with N (5 200) numerical cells are used in

[0, 1], and Dt 5 0.39498. Courant numbers associated withLagrangian grid at t 5 Dt and Dt/2.
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FIG. 9. A slow wave (solid lines) after one time step when different time steps are used: 200 cells in [0, 1] and B50 . Dotted lines are the initial
condition. The numbers in the upper-right box are Dt 5 0.2, 0.4, 0.8, and 1.6, and they are for the solutions from the hybrid scheme (solid lines).
Dashed lines are references obtained from an explicit scheme. The numbers in the upper-left box indicate the solution from the explicit scheme at
different times, i.e., t 5 0.2, 0.4, 0.8, and 1.6. The numbers of iterations used here are the following: 6 iterations for Dt 5 0.2; 10 iterations for
Dt 5 0.4; 14 iterations for Dt 5 0.8; and 24 iterations for Dt 5 1.6.
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FIG. 10. A fast wave (solid lines) after one time step when time steps Dt 5 0.13 and 0.52 are used, with 200 cells in [0, 1] and B50 . Dotted lines
are the initial condition. The numbers in the upper-right box are Dt 5 0.13 and 0.52, and they are for the solutions from the hybrid scheme (solid
lines). Dashed lines are solutions obtained from an explicit scheme at t 5 0.13 and 0.52, which are indicated by the numbers in the upper-left box.
The number of iterations used here is the following: 12 iterations for Dt 5 0.13 and 18 iterations for Dt 5 0.52.
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FIG. 11. An Alfven wave (solid lines) after one time step when time steps Dt 5 0.24 (P40 Dx/ca) and 0.96 (P160 Dx/ca) are used, with 200 cells
in [0, 1] and B50 . Dotted lines are the initial condition. The numbers in the upper-right box are Dt 5 0.24 and 0.96, which are for the solutions from
the hybrid scheme (solid lines). The numbers in the upper-left box are t 5 0.24 and 0.96, which are for the solutions from an explicit scheme (dashed
lines). The number of iterations used here is the following: 10 iterations for Dt 5 0.24 and 18 iterations for Dt 5 0.96.

fast, Alfven, and slow waves, cf Dt/Dx, ca Dt/Dx, and cs We do not recommend the use of an implicit scheme
for shock-tube problems. If a discontinuity has to be re-Dt/Dx, are around 122, 67.6, and 40.4 respectively. It is cf

Dt/Dx that cannot be larger than unity in an explicit scheme. solved in some part of a simulation domain, sizes of time
steps should be restricted so that Courant numbers corre-The convergences obtained from the approach Ak for

k 5 2, 10, 20, 40, and 100 are given by the dashed lines in sponding to the wave in that part of the domain remain
around unity. Figure 12 shows the solution of a shock-tubeFig. 7, and the convergences obtained from the approach

Bk for k 5 10, 20, 40, and 100 are given by solid lines in problem obtained from the implicit–explicit scheme. In
order to resolve well the slow shocks and rotational discon-Fig. 7.

The first example for ideal MHD equations is the propa- tinuities before they travel beyond the simulation domain,
we have used 800 cells in [0, 1] for this problem. Solid linesgation of a slow wave initially given by Eqs. (43), (44) with

a shifted flow velocity ux . The initial condition is shown in Fig. 12 show the profiles at t 5 0.7. The solution of the
shock tube problem contains two rotational discontinuities,by the dotted lines in Fig. 8. At each time step, fast and

Alfven waves are implicitly treated, and slow waves are two slow shocks, and one contact discontinuity. The struc-
ture near x 5 0 in the density profile comes from the purepartially implicitly and partially explicitly treated. Figure

9 shows the feature of the scheme for the slow wave when discontinuity in the initial condition, and it may be reduced
through a very small structure introduced for the initialdifferent time steps are used. The dotted lines in the figure

are the initial condition, and dashed lines are considered discontinuity [26].
as references which are obtained from an explicit scheme
[26]. It is hard to see the difference between the implicit 5. CONCLUSIONS AND DISCUSSIONS
and explicit schemes when Dt 5 0.1 (P 20 Dx/cs).

In order to show the property of the scheme for fast (or We have developed an iterative implicit–explicit hybrid
scheme for hyperbolic systems of conservation laws. TheAlfven) waves, we initially set up a fast (or an Alfven) wave

through a nonvanishing differential of Riemann invariant scheme is of Godunov-type in both implicit and explicit
regimes, in which the flux needed in a Godunov schemedRf1 (or dRa1) and set (r, p, ux , uy , uz , By , Bz) to (1.0, 0,

20.5, 0, 0, 3.0, 2.0) at x 5 0. Bx 5 3.0. The solid lines in is calculated from Riemann problems, is accurate to second
order in both space and time for all Courant numbers,Fig. 10 show a fast wave after one time step when Dt 5

0.13 (P 40 Dx/cf) and Dt 5 0.52 (P 160 Dx/cf) are used. is in a strictly conservation form, and is able to resolve
discontinuities. Each wave in the scheme may be eitherThe solid lines in Fig. 11 show a Alfven wave after one

time step when Dt 5 0.24 (P 40 Dx/ca) and Dt 5 0.96 implicitly, or explicitly, or partially implicitly and partially
explicitly treated depending on its associated Courant(P 160 Dx/ca) are used.
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FIG. 12. A shock tube problem, with Dt 5 0.002, 800 cells in [0, 1], and B100 and 3 iterations. Initially, (r, p, ux , uy , uz , By , Bz) is (0.82, 0.509,
0.3235, 1.586, 0.7946, 3, 2) for x , 0.5, and (1, 0.5, 20.3052, 0, 0, 3, 2) for x . 0.5. Bx 5 3. The initial condition is shown by the dashed lines. The
solid lines are the profiles at t 5 0.7, which contain two slow shocks, two rotational discontinuities, and one contact discontinuity.
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